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We demonstrate that scale-free patterns are observed in a spatially extended stochastic system whose deter-
ministic part undergoes a saddle-node bifurcation. Remarkably, the scale-free patterns appear only at a par-
ticular time in relaxation processes from a spatially homogeneous initial condition. We characterize the scale-
free nature in terms of the spatial configuration of the exiting time from a marginal saddle where the pair
annihilation of a saddle and a node occurs at the bifurcation point. Critical exponents associated with the
scale-free patterns are determined by numerical experiments.
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Scale-free patterns are widely observed in nature. The
most familiar one in statistical mechanics might be that in
particle configurations at the gas-liquid critical point �1�. The
patterns are characterized by a correlation length which is
given by a power-law function of the distance from the criti-
cal temperature. Another type of scale-free patterns was
found in diffusion-limited aggregation �2� and spinodal de-
composition �3�. In this type, the length scale that character-
izes the patterns grows as a power-law function of time,
without the fine-tuning of the system parameters.

Recently, a different type of scale-free pattern called dy-
namical heterogeneity has been found in glassy systems
�4–10�. Such patterns are fascinating because they become
visible only by quantifying some dynamical events �called
bond-breaking events or unlocking events� during a particular
time interval t*. Let us consider dense colloidal suspensions
as an example. We denote the displacement of particles in a
region around a position x during a time interval t as q�x , t�.
Then, the correlation length ��t� of the pattern q�x , t� be-
comes maximum at a time t* and ��t*� exhibits divergent
behavior as a function of the distance from a critical param-
eter value.

The characterization in terms of the time-dependent cor-
relation length ��t� is similar to that of growing patterns,
while the existence of the critical parameter value is similar
to critical phenomena in equilibrium systems. Such a coex-
istence of these features implies that q�x , t*� indeed belongs
to a different type of scale-free patterns. Since its nature is
simple and nontrivial, we expect that there exists a wide
class of systems that exhibit such a type of patterns. Moti-
vated by this expectation, we propose the simplest model
among them. We then intend to elucidate the nature of the
different type of scale-free patterns.

In the present Rapid Communication, we study a spatially
extended stochastic system that exhibits relaxation behavior
at a saddle-node bifurcation. Although there is a certain idea
that connects this model with the understanding of glassy
systems �11,12�, we do not consider the relationship in this
Rapid Communication. Instead, we regard this model as a
typical system that undergoes an elementary bifurcation un-

der the influence of noise. By elementary bifurcation, we
imply pitchfork bifurcation, Hopf bifurcation, and saddle-
node bifurcation �13�. Among them, the first two bifurcations
under the influence of noise have been studied intensively in
the context of critical phenomena �14–16�. Therefore, a
saddle-node bifurcation with noise might be related to a dif-
ferent class of critical phenomena.

Specifically, we study a coupled Langevin equation in a
one-dimensional lattice �i � i=1,2 , . . . ,N�. Let �i be a one-
component quantity defined at the ith site, where we assume
periodic boundary conditions �0=�N and �N+1=�1. Then, �i
obeys

�t�i = f��i� + ���i+1 + �i−1 − 2�i� + �i, �1�

where f���=−����−1�2+�� with small �; � is a coupling
constant, and �i represents Gaussian white noise that satisfies
��i�t�� j�t��	=2T��t− t���ij. The noise intensity T is assumed
to be a small positive constant. The potential function v���,
which is defined by f =−��v, has a single minimum at �
=0 when ��0, while a pair comprising the minimum and
maximum appears around �=1 when � becomes negative
�see Fig. 1�. The minimum and maximum correspond to the
node and saddle point, respectively, in the deterministic
equation �t�= f���. Such a qualitative change in the trajec-
tories at �=0 in this deterministic equation is called saddle-
node bifurcation. We call the fixed point �=1 for �=0 mar-
ginal saddle because this saddle vanishes when �	0. A
characteristic feature of �1� is that even small noise drasti-
cally affects the trajectories passing through the marginal
saddle. For example, when �
0, the deterministic trajecto-
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FIG. 1. Potential v as a function of � for several values of �.
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ries starting from �=1.2 reach the fixed point near �=1,
while trajectories under the influence of noise escape from
this fixed point and finally arrive at the region near the glo-
bally minimum point �=0. In the argument below, in order
to extract a simple relation, we focus on the case �=0 at
which the saddle-node bifurcation occurs.

Since the model we study might be the simplest in the
class of spatially extended stochastic systems in which a
saddle-node bifurcation occurs locally in space, our model
has some relevance to many experimental systems. One ex-
ample is fluctuating motion of a single one-dimensional
polymer that is subjected to a trapping potential in a liquid
�see Ref. �17��. Another example might be found in stochas-
tic reaction-diffusion systems because a saddle-node bifurca-
tion is observed in chemical reactions �see Ref. �18� as an
illuminating example�. Although multiplicative noise gener-
ally occurs in chemical reaction systems, we expect that the
multiplicative nature does not affect the behavior reported
below unless the noise intensity becomes zero at the mar-
ginal saddle.

We investigate �1� by numerical simulations. Concretely,
we employ an explicit discrete method with a time step �t
=0.01, where the error is O��t3/2�. We have confirmed that
the important results reported below remain valid when we
select �t=0.001. We also restrict our investigations to the
case �=1. We obtained the same result for the case �=0.5.
That is, a fine-tuning of the parameter value is not necessary
�19�. Finally, since we are interested in the patterns emerging
from a homogeneous state, we assume that �i�0�=1.2.

In order to observe the time evolution of �i, we display
contour curves defined by �i�t�=0.5 for several values of T

�see Fig. 2�. Each contour curve distinguishes the late stage
��i�t�
0� from the early stage ��i�t�
1� because the two
stages are connected in a short time interval around the ex-
iting time from the marginal saddle at each site i. Thus, for
example, the pattern �i at time t=828 for the system with
T=10−6 consists of domains �i
1 and �i
0, as shown in
Fig. 3, where the time t=828 is selected such that the spatial
average of �i becomes 0.5. It should be noted that such a
pattern appears only around a particular time t= t*. Further-
more, the typical length scale of the pattern at the time t*
increases as T decreased. This suggests that �i�t*� is scale-
free in the limit T→0.

The behavior of �i�t� is similar to that of a field q�x , t�
describing a dynamical event in glassy systems �see Ref.
�4��. In order to make the analogy more explicit, we consider
the spatial average of �i, �̄�t�=�i�i�t� /N. In Fig. 4, we show
the ensemble average ��̄�t�	 for the system with T=10−a,
where a=3, 4, 5, and 6. The staying time at the marginal
saddle increases as T is decreased. The graph of ��̄�t�	 is
similar to a time correlation function of density fluctuations
in glassy systems. Furthermore, we measure the fluctuation
intensity

���t� = N���̄2�t�	 − ��̄�t�	2� . �2�

As shown in Fig. 5, ���t� has one peak at a time t= t*, which
provides a precise definition of t* intuitively used in the pre-
vious paragraph. Then, ���t*� increases as T is decreased. In
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FIG. 2. Contour curves defined by �i�t�=0.5 for several values
of T. N=4096.
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FIG. 3. Spatial pattern at time t=828 for the system with T
=10−6. N=4096.
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FIG. 4. �̄ as a function of t. N=1024.
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FIG. 5. �� as a function of t. N=1024. Inset: ���t*� as a func-
tion of T in a log-log scale. The guide line represents ���t*�

T−1/3.
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fact, the inset of Fig. 5 suggests that ���t*� exhibits the
power-law divergence

���t*� 
 T−�, �3�

where the value of the exponent � is close to 1 /3. This
divergent behavior corresponds to the dynamical heterogene-
ity in glassy systems. These observations naturally lead us to
a conjecture that the correlation length of �i�t*� exhibits the
power-law divergence as a function of T. In this Rapid Com-
munication, we do not investigate �i�t*� directly, but propose
a quantity that characterizes the divergent behavior.

Our basic idea for the characterization of the patterns
is to employ a special solution �*�t� of the equation
�t�=−��v��� under the conditions ��t�→1 for t→−�,
��t�→0 for t→�, and ��0�=0.5. We then express the time
evolution of the patterns as

�i�t� = �*�t − �i� + �i�t − �i� , �4�

where �i represents the exiting time from the marginal
saddle, which is defined by �i��i�=0.5. By this definition,
the pattern of �i corresponds to the contour curve shown in
Fig. 2. For a typical trajectory whose weight is large,
�i�t−�i� is expected to be smaller than the special solution.
Here, we conjecture that the fluctuation intensity of �i exhib-
its a power-law divergence of T because the divergence is
related to the Goldstone mode associated with the symmetry
breaking of the time translational symmetry. We thus charac-
terize the conjectured scale-free patterns by the statistical
quantities of �i.

Concretely, by introducing the Fourier transform of �i as

�̃�kn� �
1

N
�
j=1

N

eiknj� j , �5�

we measure the spectrum

��kn;T� � N���̃�kn��2	 , �6�

where kn=2�n /N with n=1,2 , . . . ,N /2. Here, �¯	 repre-
sents the ensemble average. In order to extract the singular
behavior of ��kn ;T� in the limit T→0, we first assume a
scaling relation

��kn;T� = T−�̃�knT−�� , �7�

where the exponents  and � characterize the divergences of
the amplitude of the spectrum ��kn ;T� and its length scale,
respectively, in the limit T→0. The exponents  and � are
determined such that ��kn ;T� with T=10−a, where a=3, 4, 5,
and 6, collapses into one universal curve. However, after
some trials, we find that a logarithmic correction appears in
the scaling relation. To demonstrate it, we express ��kn ;T�T
as a function of knT−1/3 / �−ln T�1/2 in Fig. 6, which suggests
that the scaling relation �7� with the logarithmic correction
appears to be valid for the values

 = 1, �8�

� = 1/3. �9�

The exponent  is related to the scale dimension of the

quantity �i. In order to confirm this fact explicitly, we con-
sider the spatial correlation function

��l�m	 = T−�−���K

2�
�
n=1

N

e−iKn�l−m�T�
�̄�Kn� , �10�

where Kn=knT−� and �K=T−�2� /N. From �10�, we find a
scaling form

�l = T−�−��/2��T�l� , �11�

where ��x� is a fluctuating field whose distribution function
is independent of T in the limit T→0. By combining �4� with
this scaling form �11�, we arrive at our main claim that the
scale-free patterns are characterized by

�i�t� 
 �*�t − T−1/3��T1/3i�� , �12�

which clearly indicates the scale-free nature at a saddle-node
bifurcation point in the limit T→0. We remark that the sta-
tistical quantities of �i, including the critical exponent � in
�3�, can be calculated theoretically from our result �12�. We
believe that the representation �12� captures the essence of
the scale-free pattern.

We have proposed a universality class consisting of sto-
chastic systems undergoing a saddle-node bifurcation. A re-
markable feature of this class is that the criticality near a
saddle-node bifurcation originates from the fluctuations of
the time passing through a marginal saddle. We expect that
there is a rich variety of systems belonging to this class,
although a quantitative experimental measurement seems to
be challenging. An important example includes neuronal
avalanches �20�, which have recently been studied exten-
sively. The analysis of a simple mean-field model has re-
vealed the critical nature clearly �21�. We conjecture that
scale-free patterns similar to those studied in this Rapid
Communication will be observed in systems related to neu-
ronal avalanches.

Furthermore, we have pointed out that the cooperative
behavior observed in our model is related to the dynamical
heterogeneity in glassy systems. We wish to emphasize that
this similarity is not superficial. In fact, recently, we have
found that the dynamics of k-core percolation in a random
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FIG. 6. ��kn ;T�T as a function of knT−1/3 / �−ln T�1/2 for several
values of T. N=4096. The statistical error bar is about the symbol
size. By comparing the systems with N=512, 1024, 2048, and 4096,
it is found that the finite-size effects are fairly small.
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graph exhibits a jamming transition via a saddle-node bifur-
cation of some order parameter in the thermodynamic limit
�22�.

The most important result is the expression �12�, which
claims that the criticality of the pattern observed at a particu-
lar time is characterized by �i. The approach based on this
idea was addressed in the theoretical analysis of a model
�12�. We expect that this approach would elucidate the nature
of the criticality of jamming systems.

Before ending this Rapid Communication, we present
some important future problems. The first problem is to un-
derstand the behavior of d-dimensional systems. Theoreti-
cally, we should start estimating the upper-critical dimension
by using physical arguments. The second problem is to un-
cover possible normal forms in multicomponent systems.
Even if the deterministic part exhibits a saddle-node bifurca-
tion, the effect of noise is not determined uniquely in such
systems. There might be some systems in which the expo-

nents are altered from the result we obtained in this paper.
Finally, the � dependence of the length scale should be clari-
fied. These will define another exponent, which might be
more relevant in the context of critical phenomena.

In order to consider these future problems, we need to
develop the theoretical analysis. We have just finished the
mean-field analysis, which will be published soon �23�. Ac-
cording to the result, the field � scales as �
T−1/3 and there
are scaling relations as functions of �T−2/3. From the naive
dimensional analysis, the length scale of the system with �
�0 turns out to be proportional to �−1/2, which leads to 
=1 and �=1 /3.
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